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Enantioselective aldol reactions of trichlorosilyl enol ethers
catalyzed by chiral N,N0-dioxides and monodentate N-oxides
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Abstract—Chiral N,N0-dioxides and monodentate N-oxides were employed as catalysts in catalytic, enantioselective aldol reactions
of trichlorosilyl enol ethers. The reactions of acyclic enol ethers using N,N0-dioxides resulted in the anti-adducts from (E)-enol ethers
and the syn-adducts from (Z)-enol ethers. The reactions of cyclic (E)-enol ethers using N,N0-dioxides gave the anti-adducts, whereas
monodentate N-oxides predominantly gave the syn-adducts.
� 2003 Elsevier Ltd. All rights reserved.
The aldol reaction is a powerful method for forming
carbon–carbon bonds. Controlling the absolute config-
urations of the newly formed stereogenic center is im-
portant in natural product syntheses. Although
significant developments of the asymmetric aldol reac-
tion1 are based on the principles of conventional
Mukaiyama-type catalysis using various chiral Lewis
acids,2 these processes often preferentially afford the
syn-aldol adduct from both stereoisomers of trimethyl-
silyl enol ether via acyclic transition states.

An alternative to the asymmetric aldol reaction is the
catalytic activation of the donor rather than the accep-
tor.3;4 Recently, Denmark reported enantioselective
aldol reactions catalyzed by chiral phosphoramide
derivatives involving hypervalent silicate intermediates,5

which afforded the corresponding adducts with high
diastereo- and enantioselectivities.6
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As part of our program directed at developing N-oxide-
mediated reactions,7 we previously reported an
enantioselective allylation of aldehydes with allyltri-
chlorosilanes8 via hexacoordinate silicate complexes as
intermediates utilizing chiral bipyridine N,N0-dioxides 1
and 2 as catalysts, which led to the anti-adduct from
E-allylic trichlorosilane and the syn-adduct from Z-
allylic trichlorosilane with high enantioselectivities.
Since trichlorosilyl enol ether is an oxygen analogue of
trichloroallylsilane, N-oxide-catalyzed aldol reactions of
the silyl enol ethers are expected to proceed via a similar
mechanism.9 Herein we describe aldol reactions of tri-
chlorosilyl enol ethers catalyzed by chiral N,N0-dioxides
and monodentate N-oxides.

Our initial studies focused on the reaction of trichloro-
silyl enol ether 3 derived from acetophenone with
benzaldehyde using chiral N,N0-dioxide (R)-1 or (R)-2 as
a catalyst (3mol%) in the presence of diisopropyl-
ethylamine (1.0 equiv) in dichloromethane. Fortunately,
the reactions proceeded smoothly at )78 �C to afford the
corresponding aldol adducts in high yields, but the ob-
served enantioselectivities were low (Table 1, entries 1
and 2). To confirm the stereochemical relationship of the
geometry of enol ether to the product, aldol reactions of
(E)- and (Z)-trichlorosilyl enol ethers 4 derived from
heptanal6d were investigated. The reaction proceeded
smoothly and the stereochemical information present in
the trichlorosilyl enol ether was completely transmitted
to an anti (from (E)-4) or a syn (from (Z)-4) about the
new C–C bond of the product (entries 3–6). This result
suggested that the aldol reaction mediated by 1 or 2
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Table 1. Enantioselective aldol reactions of acyclic trichlorosilyl enol ethers with aldehydes catalyzed by chiral N,N0-dioxides

Entry Enol ether Aldehyde, R Catalyst Time (h) Yielda (%) syn/antib % Ee (syn, anti)c

1 3 Ph (R)-1 1 85 –– <5

2 3 Ph (R)-2 3 87 –– <5

3 (E)-4 Ph (R)-1 0.5 96d 1:11 6, 7

4 (E)-4 Ph (R)-2 0.5 86d 1:12 81, 23

5 (Z)-4 Ph (R)-1 0.5 88d 3:1 9, 12

6 (Z)-4 Ph (R)-2 0.5 90d 4:1 79, 23

7 (Z)-5 Ph (R)-1 6 82 7:1 82, 33

8 (Z)-5 Ph (R)-2 0.5 88 9:1 6, <5

9 (Z)-5 4-MeOC6H4 (R)-1 6 86 15:1 67, 13

10 (Z)-5 PhCH@CH (R)-1 6 59 15:1 63, 43

11 (Z)-5 PhCH2CH2 (R)-1 6 Trace –– ––

a Isolated combined yield.
bDetermined by 1H NMR.
cDetermined by HPLC (Daicel Chiralcel OB-H, OD-H or OJ-H).
d Isolated as dimethyl acetal.
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proceeded via six-membered cyclic chair-like transition
state involving hypervalent silicate (Fig. 1) similar to the
above allylation.8 The reaction of (Z)-4 with catalyst
(R)-2 displayed a high enantioselectivity (79–81% ee)
(entries 4 and 6), while a low enantioselectivity was
observed with catalyst (R)-1 (entries 3 and 5). Among
the various trichlorosilyl enol ether surveyed, (Z)-tri-
chlorosilyl enol ether 5 derived from propiophenone
predominantly formed the syn-aldol adduct in high yield
with 82% ee by employing (R)-1 as a catalyst (entry 7),10

while a low enantioselectivity was observed with catalyst
(R)-2 (entry 8). Although the enantioselectivity strongly
depended upon the structure of catalyst, the stereo-
chemical relationship of the enol ether to the product
was consistent.

Next other aldehydes were examined in the reaction of
(Z)-5 with (R)-1 as a catalyst. 4-Methoxybenzaldeyde
predominantly gave the syn-adduct, though the enantio-
selectivity slightly decreased (entry 9). A low reactivity
Figure 1. Transition state model for the N,N0-dioxide-catalyzed aldol

reaction.
was observed with dihydrocinnamaldehyde (entry 11).
This trend is similar to those observed in the allylation of
aldehyde with allyltrichlorosilane catalyzed by 1 or 2.8

On the other hand, aldol reactions of the trichlorosilyl
enol ethers derived from cyclic ketones were rather
intriguing. The reaction of benzaldehyde with (E)-enol
ether derived from cyclohexanone was investigated
using N,N0-oxide as a catalyst. As expected, (R)-1 pre-
dominantly gave the anti-adduct, but the enantioselec-
tivity was unsatisfactory (Table 2, entry 1). (R)-2 also
resulted in a low enantioselectivity and the diastereo-
selectivity decreased, but the anti-selectivity was main-
tained (entry 2). Since Denmark reported high
enantioselectivities with monodentate chiral phosphor-
amides, the aldol reaction with chiral monodentate
N-oxides was investigated. Surprisingly, monodentate
N-oxide (R)-67e;11 and (R)-712 gave syn-adducts with
high diastereoselectivity (entries 3 and 4). syn-Selectivity
was also observed in the reaction of five-membered and
seven-membered ring enol ethers (entries 5 and 6) and
the best result was obtained in the reaction of 4-trifluo-
romethylbenzaldehyde with the trichlorosilyl enol ether
derived from cyclopentanone using (R)-7 as a catalyst
(entry 8). Again a low reactivity was observed with di-
hydrocinnamaldehyde (entry 10).

This intriguing switch of diastereoselectivity might be
explained by the mechanism proposed by Denmark.
Denmark observed that a sterically small phosphor-



Table 2. Enantioselective aldol reactions of cyclic trichlorosilyl enol ethers with aldehydes catalyzed by chiral N,N0-dioxides and monodentate

N-oxides

Entry Enol ether, n Aldehyde, R Catalyst Time (h) Yielda (%) syn/antib % Ee (syn, anti)c

1 6 Ph (R)-1 0.5 80 1:10 39, 30

2 6 Ph (R)-2 2 94 1:3 21, 30

3 6 Ph (R)-6 3 92 8:1 <5, 30

4 6 Ph (R)-7 0.5 92 25:1 47, 60

5 7 Ph (R)-7 0.5 93 30:1 50, 11

6 5 Ph (R)-7 0.5 94 13:1 62, 66

7 5 4-MeOC6H4 (R)-7 0.5 90 14:1 63, 55

8 5 4-CF3C6H4 (R)-7 1 98 14:1 72, 69

9 5 PhCH@CH (R)-7 3 93 4:1 28, 42

10 5 PhCH2CH2 (R)-7 5 22 1:1 50, 40

a Isolated combined yield.
bDetermined by 1H NMR.
cDetermined by HPLC (Daicel Chiralcel OB-H, OD-H or OJ-H).
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amide predominantly produced the anti-adduct in the
reaction of benzaldehyde with the trichlorosilyl enol
ether derived from cyclohexanone catalyzed by chiral
monodentate phosphoramides, while a bulky phosphor-
amide predominantly gave the syn-adduct.6b This phe-
nomenon was explained by the different structures of the
six-membered transition state. With a small phosphor-
amide, two catalyst molecules coordinate to the silicon
atom to form an octahedral chair-like transition state A,
which leads to the anti-adduct. With a bulky phosphor-
amide, a single catalyst coordinates to the silicon atom
to form a trigonal bipyramid boat-like transition state
B, which leads to the syn-adduct (Fig. 2).13 Our result
might be explained according to his model. Two oxygen
atoms of an N,N0-dioxide molecule chelate to the silicon
atom forming a cationic octahedral intermediate A,
which affords the anti-adduct, while one oxygen atom of
a monodentate N-oxide molecule coordinates to the
silicon atom forming a cationic trigonal bipyramid in-
termediate B, which affords the syn-adduct.14

In conclusion, we employed chiral N-oxides as catalysts
for enantioselective aldol reactions of trichlorosilyl
enol ethers with aldehydes. In the reaction of acyclic
enol ethers, N,N0-dioxides gave anti-adducts from (E)-
Figure 2. Transition state models for the base-catalyzed aldol reaction.
enol ethers and syn-adducts from (Z)-enol ethers. In the
reaction of cyclic (E)-enol ethers, N,N0-dioxides gave
anti-adducts, whereas monodentate N-oxides predomi-
nantly gave the syn-adducts. Studies on the mechanism
and the design of chiral N-oxides to improve diastereo-
and enantioselectivity are currently in progress.
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